
Poznan University of Technology European Credit Transfer System

Faculty of Computing

page 1 of 4

STUDY MODULE DESCRIPTION FORM
Name of the module/subject Code

Software Design and Modelling 1010512321010517859

Field of study Profile of study
(general academic, practical)

Year /Semester

Computing general academic 1 / 2
Elective path/specialty Subject offered in: Course (compulsory, elective)

Software Engineering English obligatory

Cycle of study: Form of study (full-time,part-time)

Second-cycle studies full-time

No. of hours No. of credits

Lecture: 30 Classes: - Laboratory: 30 Project/seminars: - 4

Status of the course in the study program (Basic, major, other) (university-wide, from another field)

major from field

Education areas and fields of science and art ECTS distribution (number
and %)

technical sciences

4 100%

Responsible for subject / lecturer:

Bartosz Walter PhD

email: Bartosz.Walter@cs.put.poznan.pl

tel. 61 6652980

Institute of Computing Science

Piotrowo 2 Str., 60-965 Poznan

Prerequisites in terms of knowledge, skills and social competencies:

1 Knowledge
Learning objectives of the first cycle studies defined in the resolution of the PUT Academic
Senate, especially K_W1-2, K_W4, K_W6-15 that are verified in the admission process to the
second cycle studies ? the learning objectives are available at the website of the faculty
www.fc.put.poznan.pl

Student starting this module should have a basic knowledge of software engineering and
object-oriented design.

2 Skills
Learning objectives of the first cycle studies defined in the resolution of the PUT Academic
Senate, especially K_U1-2, K_U4, K_U7-8, K_U14-20, K_U22-23, K_U26 that are verified in
the admission process to the second cycle studies ? the learning objectives are available at
the website of the faculty www.fc.put.poznan.pl

Should have skills to design and implement of simple software systems and skills of solving
basic problems related to requirements analysis, creating software specification, designing
systems and skills that are necessary to acquire information from given sources of information.

3 Social
competencies

Student should understand the need to extend his/her competences / has the willingness to
work in a team. In addition, in respect to the social skills the student should show attitudes as
honesty, responsibility, perseverance, curiosity, creativity, manners, and respect for other
people.

Assumptions and objectives of the course:

1. Provide students knowledge of object-oriented design, with respect to understanding their role, responsibility and
relations among them

2. Present methods of evaluating design quality of object-oriented systems with use of OO metrics and code smells

3. Develop students? teamwork skills in the context of designing software systems

4. Present unit testing as a method for verification if objects properly fulfill their responsibilities

5. Present design patterns as a reusable schemas leading to improving quality of object-oriented design. Teaching
students using design patterns in implementing software systems.

6. Presenting software refactoring as a technique of improving internal quality of software systems.

Study outcomes and reference to the educational results for a field of study

Knowledge:

Poznan University of Technology European Credit Transfer System

Faculty of Computing

page 2 of 4

1. has well-established theoretical knowledge of computer systems architecture, software design, software testing and
verification, software engineering - [K_W4]

2. has detailed theoretical knowledge related to selected areas of computer science creating software architecture,
documenting system architecture, evaluation of architecture, modeling software, designing software, testing and verifying
software - [K_W5]

3. has knowledge regarding trends and the most important new developments in computer science and related disciplines -
[K_W6]

4. has basic knowledge regarding life-cycle of software or hardware systems - [K_W7]

5. knows the fundamental methods, techniques and tools employed to solve complex engineering tasks in a selected area of
software architecture, software modeling and design, software testing and verification - [K_W8]

Skills:

1. is able to acquire, combine, interpret and evaluate information from literature, databases and other information sources (in
mother tongue and English); draw conclusions, and formulate opinions based on it. - [K_U1]

2. is able to plan and arrange self-education process - [K_U5]

3. has language skills at B2+ level in accordance with the requirements set out for level B2+ Common European Framework
of Reference for Languages - [K_U6]

4. is able to employ analytical, simulation, and experiment methods to formulate and solve engineering tasks and basic
research problems - [K_U9]

5. is able to combine knowledge from different areas of computer science (and if necessary from other scientific disciplines) to
formulate and solve engineering tasks; and use system approach that also incorporates nontechnical aspects - [K_U10]

6. is able to formulate and test hypotheses regarding engineering problems and basic research problems - [K_U12]

7. is able to assess usefulness and possibility of employing new developments (methods and tools) and new IT products -
[K_U13]

8. is able to develop an object-oriented model of a simple software system (e.g., in UML notation) - [K_U17]

9. is able to assess software architecture from the perspective of non-functional requirements - [K_U18]

10. is able to effectively participate in software inspections - [K_U19]

11. is able to propose enhancements (improvements) to existing technical solutions - [K_U21]

12. is able to evaluate usefulness of methods and tools (also to identify their limitations) used to solve engineering tasks, i.e.,
building IT systems or their components - [K_U24]

13. is able to design (according to a provided specification which includes also non-technical aspects) a complex device, an IT
system, or a process; and is able implement it (at least partially) using appropriate methods, techniques, and tools (including
adjustment of available tools or developing new ones) - [K_U27]

Social competencies:

1. understands that knowledge and skills related to computer science quickly become obsolete - [K_K1]

2. is able to correctly assign priorities to own tasks and tasks performed by others - [K_K6]

Assessment methods of study outcomes

Poznan University of Technology European Credit Transfer System

Faculty of Computing

page 3 of 4

Formative assessment:

a) lectures:

- based on the answers to the questions which test understanding of material presented on the lectures

b) laboratory classes / tutorials / projects / seminars:

- based on the assessment of the tasks done during classes and as a homework

Summative assessment:

a) verification of assumed learning objectives related to lectures:

- assessment of knowledge and skills, examined by a written test with multiple choices and problem questions.
Student can gain 10.0 pts; passing limit is 5.0 pts

- discussing the results of the examination

b) verification of assumed learning objectives related to laboratory classes / tutorials / projects / seminars:

- assessment of student?s preparation to particular laboratory classes and assessment of student?s skills needed to
realize tasks on these classes

- continuous assessment of student?s work during classes - rewarding ability to use learned principles and methods

- assessment of projects realization, including ability to work in team

Possibility to gain additional points by activity on classes:

- elaboration of additional aspects regarding the subject

- effectiveness of applying acquired knowledge to solve problems

- ability to cooperate with the team during solving problems

- providing additional remarks for the lecturer how to improve teaching materials

- elaboration of an outstanding solution to an assignment - for use as a case-study

- highlighting the problems with students? perception to improve the teaching process

Course description

The program of the lecture:

The concept of objects and object-oriented perception. Mechanisms of object-oriented programming. Object-oriented
languages vs. object-oriented design. Roles of different types of objects in design. Criteria for evaluation of object-oriented
design. Metrics and their interpretation. Unit testing. Mock objects. Design patterns - idea, description, categories. Overview of
the catalogue of design patterns, with description of goal, description, participants and consequences - for each of them. The
code decay phenomenon - reasons, symptoms, consequences. High-level evaluation of design quality with code smells.
Methods of identification of code smells. Overview of selected refactorings. Verification methods of refactorings. Aspect-
oriented programming and its implementation in different technologies. AspectJ as an aspect-oriented language. Inversion of
Control and Dependency Injection.

The course consists of fifteen 2-hour laboratory classes and it starts with an instructional session at the beginning of a
semester. Students work individually or in teams of 2-4.

The program of laboratory classes:

Creating preliminary design with CRC cards. Analysis and evaluation of the CRC design. Assigning responsibility to objects.
Measuring software with OO metrics. Analysis and interpretation of OO metrics. Implementing unit tests. Applying mock
objects in unit tests. Selection and application of appropriate design patterns in design problems. Identification of code smells
in code. Comparison of metrics and code smells as tools for evaluation of design quality. Applying software refactorings (both
manually and with tools support). Implementation of a simple aspect-oriented program and use of selected capabilities of
AspectJ. Design and implementation of a simple program based on a Inversion of Control concept.

Learning methods:

1. Lectures: multimedia presentation, presentation illustrated with examples presented on a black board, solving tasks,
multimedia showcase, demonstration, discussion, case study

2. Tutorials: solving tasks, practical exercises, discussion, teamwork, multimedia showcase, workshops, case studies,
tutorial

Basic bibliography:

1. E. Gamma et al.: Design patterns. Elements of reusable object-oriented software. Addison-Wesley, 1994.

2. M. Fowler: Refactoring. Improving design of existing software. Addison-Wesley, 1999.

3. J. Kerievsky: Refactoring to patterns. Addison-Wesley, 1999.

4. R. C. Martin: Clean code. A Handbook of agile software craftmanship. Prentice Hall, 2008

Additional bibliography:

1. B. Meyer: Object-oriented software construction (2nd Edition). Prentice Hall, 2000.

Result of average student's workload

Activity
Time (working

hours)

Poznan University of Technology European Credit Transfer System

Faculty of Computing

page 4 of 4

1. participating in laboratory classes / tutorials: 15 x 2 hours,

2. consulting issues related to the subject of the course; especially related to t laboratory classes and
projects,

3. implementing, running and verifying software application(s) (in addition to laboratory classes)

4. participating in lectures

5. studying literature / learning aids (10 pages = 1 hour), 60 pages

6. discussing the results of the examination

7. preparing to and participating in exams: 5 hours + 2 hours

30

10

16

30

6

1

7

Student’s workload

Source of workload hours ECTS

Total workload 100 4

Contact hours 73 3

Practical activities 56 2

